Linear Parameter-Varying Control of Complex Mechanical Systems

نویسندگان

  • Christian Hoffmann
  • Herbert Werner
چکیده

Abstract: In standard linear fractional representation (LFR)-based linear parameter-varying (LPV) modeling the size of the (diagonal) scheduling block depends on the number of scheduling parameters and their repetitions, which in turn influences both the complexity of synthesis conditions and the computational load during online implementation of LPV controllers. A modeling framework motivated by, but not limited to, mechanical systems is proposed, where the size of the scheduling block depends on the system’s physical degrees-of-freedom. The scheduling block then turns out block-diagonal and can be parameterized in an affine or rational manner. This parameterization yields less complex LFRs when considering the example of a three degreesof-freedom robotic manipulator, for which then full-block multipliers are tractable and also necessary in synthesis. Synthesis and both simulation and experimental implementation results indicate that the novel rational LPV controller provides improved performance at both reduced implementation and synthesis complexity as compared to an affine LPV controller.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust gain-scheduled control of linear parameter-varying systems with uncertain scheduling parameters in the presence of the time-invariant uncertainties

In this paper, a new approach is presented to design a gain-scheduled state-feedback controller for uncertain linear parameter-varying systems. It is supposed that the state-space matrices of them are the linear combination of the uncertain scheduling parameters. It is assumed that the existed uncertainties are of type of time-invariant parametric uncertainties with specified intervals. Simulta...

متن کامل

Synchronization criteria for T-S fuzzy singular complex dynamical networks with Markovian jumping parameters and mixed time-varying delays using pinning control

In this paper, we are discuss about the issue of synchronization for singular complex dynamical networks with Markovian jumping parameters and additive time-varying delays through pinning control by Takagi-Sugeno (T-S) fuzzy theory.The complex dynamical systems consist of m nodes and the systems switch from one mode to another, a Markovian chain with glorious transition probabili...

متن کامل

Robust Fuzzy Gain-Scheduled Control of the 3-Phase IPMSM

This article presents a fuzzy robust Mixed - Sensitivity Gain - Scheduled H controller based on the Loop -Shaping methodology for a class of MIMO uncertain nonlinear Time - Varying systems. In order to design this controller, the nonlinear parameter - dependent plant is first modeled as a set of linear subsystems by Takagi and Sugeno’s (T - S) fuzzy approach. Both Loop - Shaping methodology and...

متن کامل

On the Approximation of Pseudo Linear Systems by Linear Time Varying Systems (RESEARCH NOTE)

This paper presents a modified method for approximating nonlinear systems by a sequence of linear time varying systems. The convergence proof is outlined and the potential of this methodology is discussed. Simulation results are used to show the effectiveness of the proposed method.

متن کامل

Potentials of Evolving Linear Models in Tracking Control Design for Nonlinear Variable Structure Systems

Evolving models have found applications in many real world systems. In this paper, potentials of the Evolving Linear Models (ELMs) in tracking control design for nonlinear variable structure systems are introduced. At first, an ELM is introduced as a dynamic single input, single output (SISO) linear model whose parameters as well as dynamic orders of input and output signals can change through ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014